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Enantioselective synthesis of the farnesyltransferase inhibitor,
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Abstract—The stereoselective synthesis of A-345665.0 1, a novel farnesyl transferase inhibitor, is described. The key step involves a
stereoselective addition of an imidazolyl Grignard reagent to aldehyde 8 in the presence of an external chiral auxiliary. Crystalliza-
tion of the product as the dimeric zinc complex 12 facilitates the isolation of product in >98:2 er. The biaryl linkage is formed by the
use of a Suzuki coupling, employing boronic acid 4 prepared by the directed ortho-lithiation of benzonitrile 6. The overall yield for
the six step sequence is 21%.
� 2006 Elsevier Ltd. All rights reserved.
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Figure 1. Retrosynthetic analysis of A-345665.0.
Mutation of the ras-oncogene regulating cell growth and
proliferation is implicated in up to 25% of human
cancers.1 After transcription of the protein and further
activation by normal ras-protein activation processes
(cysteine–farnesylation, cleavage of a tripeptide and C-
terminal methylation), the mutated ras-protein derives
an uncontrolled cell growth and proliferation.2 One
strategy for the interruption of this process is by the
inhibition of the farnesylation process, which is medi-
ated by farnesyl transferase (FT). A-345665.0 (1)3 has
been identified as a FT inhibitor possessing excellent
potency, bioavailability and pharmacokinetics.4 Herein,
we disclose research into the preparation of A-345665.0.

Among the synthetic challenges presented by A-
345665.0 (1) are the biaryl formation and generation
of the stereogenic center. Choosing to construct the
biaryl through a Suzuki protocol and hoping to find a
method for the stereoselective addition of the imidazole
moiety to the aldehyde, retrosynthetic analysis (Fig. 1)
led us to iodoimidazole 2, benzylbromide 3, aldehyde/
boronic acid 4, and quinoline triflate 5 as the starting
materials.
0040-4039/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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Directed ortho metalation of arenes5 followed by trap-
ping the anion with a trialkyl boronate is a powerful
method for the generation of boronic acids. Recently,
Vedsø and co-workers6 found that by using a modifica-
tion of the method described by Martin and Krizan,7

arenes bearing sensitive electron-withdrawing groups
could be ortho metalated with LiTMP and trapped
in situ with triisopropylborate (B(OiPr)3) to produce,
after work-up, the corresponding boronic acid. We
found that by protecting commercially available 4-
cyanobenzaldehyde 6a as its diethyl acetal (Scheme 1),
the desired boronic acid 4 could be obtained by the reac-
tion of 6b with LiTMP in the presence of B(OiPr)3 at
�70 �C, followed by the acidic work-up. Suzuki
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Scheme 1. Reagents and conditions: (i) triethyl orthoformate, ethanol, reflux; (ii) LiTMP, B(O-iPr)3, THF, �60 �C; (iii) Tf2O, pyr, �5 �C and (iv)
KF, toluence/methanol, cat. Pd(OAc)2, cat. biphenyl-2-dicyclohexyl-phosphane, 68 �C.
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coupling of boronic acid 4 with quinoline triflate 5 (pre-
pared from commercially available hydroxyquinoline 7)
was accomplished with catalytic Pd(OAc)2 using biphen-
yl-2-yl-dicyclohexyl-phosphane8 as the ligand and
afforded aldehyde 8. With the aldehyde in hand, the ste-
reoselective addition of an imidazolyl moiety was
investigated.

The enantioselective additions of alkyl9 and to a lesser
extent arylzinc10 reagents to carbonyl compounds con-
stitute a powerful method for the construction of chiral
secondary alcohols. We felt, however, that the presence
of heteroatoms would disrupt the highly ordered coordi-
nation complex needed to effect high levels of stereo-
selection. Guided by the work of chemists from Merck
and Dupont on the stereoselective synthesis of Efavir-
nez,11 we explored the external chiral auxiliary approach
for the addition of organometallic reagents to aldehyde
8 (Eq. 1). Starting with 5-iodo-1-methyl-1H-imidazole,
the corresponding Grignard12 or organozinc13 reagent
could be prepared. The additions of chiral auxiliaries
to the imidazolyl metallic reagent, with and without var-
ious additives, were explored to effect the stereoselective
addition to aldehyde 8 (Table 1). The use of 1-phenyl-2-
pyrrolidin-1-yl-propan-1-ol (10) under a variety of
conditions afforded alcohol 9 in moderate enantiomeric
excesses (34–60%) and in variable yields (41–80%).
Aldehyde 8, was prone to undergo a Cannizzaro14

disproportionation to the corresponding primary alco-
hol and acid, and these products were seen in the crude
reaction mixtures.
Entry MetX Ligand Additive HPLC
yield (%)

Ee
(%)

1 ZnI 10 BuLi 40 60
2 ZnI 10 None 62 55
3 ZnI 10 Me2Zn,

trifluoroethanol
81 34

4 MgCl 10 Me2Zn,
trifluoroethanol

41 56

5 MgCl 11 Me2Zn 85 80
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Bis-sulfonamide 1115 has also proven to be an effective
ligand for the stereoselective addition of organozinc
reagents to carbonyl compounds. We found that the
treatment of 11 with dimethylzinc in CH2Cl2 followed
by the addition of 3-methyl-3H-imidazol-4-yl magne-
sium chloride,12 produced a reagent that delivered the
imidazolyl moiety to aldehyde 8 in an 85% HPLC yield,
80% ee and without Cannizzaro side products. The
selectivity was not greatly affected by temperature
(84% ee at �40 �C, 70% ee at 0 �C). The chiral purity16

of the product was further enhanced through its isol-
ation as a 2:1:1 complex of alcohol 9:zinc:sulfonamide
(12).17,18 The isolation of complex 12 (69% yield from
8) from ethanol afforded alcohol 9 in a 98% ee after
decomplexation by partitioning 12 between CH2Cl2
and aqueous NaOH.
The exact nature of the imidazolyl Grignard reagent was
not determined, however, its use for the addition of the
imidazolyl moiety could be extended to other aldehydes,
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such as 4-cyanobenzaldehyde and p-anisaldehyde to
produce secondary alcohols 13 and 14, respectively.
Unfortunately, other Grignard reagents (PhMgBr) when
used under these conditions gave racemic product 15
(Fig. 2).

With the chiral alcohol in hand, the ether was
constructed (equation 2) by the alkylation of 9 with
benzylbromide 12 to afford the farnesyltransferase
inhibitor A-345665.0 (1).
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Reagents and conditions: (i)  see Ref. 18;  (ii) aq NaOH, CH2Cl2; (iii) 
LiHMDS, 4-cyanobenzyl bromide, Bu4NI (10 mol %), DMF, 0 ºC. 

ð2Þ
In summary, we have developed a short and selective
synthesis of A-345665.0. It is highlighted by the forma-
tion of a chiral secondary alcohol through the enantio-
selective addition of a imidazolyl Grigand reagent to
an aldehyde using an external chiral auxiliary.
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